VEEGUM® Magnesium Aluminum Silicate
VANATURAL® Bentonite Clay
For Personal Care and Pharmaceuticals
Table of Contents

Formulation Benefits
- Stabilize Emulsions
- Stabilize Suspensions
- Stabilize Organic and Natural Formulations
- Modify Rheology
- Enhance Skin Feel
- Modify Organic Thickeners
- Perform at High and Low pH
- Function with Most Additives
- Resist Degradation
- Act as Binders and Disintegrants
- Provide Particular Functionality in Pharmaceuticals

Preparation of Dispersions

Synergy with Organic Gums and Polymers
- Recommended Mixing Procedures

Natural Smectite Clays - A Grade for Every Use
- VEEGUM® Grades for Pharmaceuticals Application Guide
- VEEGUM® and VANATURAL® Grades for Personal Care Application Guide

Smectite Clays
- What They Are
- Clay Hydration
- Clay Rheological Properties
- Rheology
- Yield Value
- Rheology Modifiers

Vanderbilt Minerals, LLC
33 Winfield Street, P.O. Box 5150, Norwalk, CT 06856-5150
(800) 562-2476 Fax: (203) 855-1220
E-Mail: mineralsales@vanderbiltminerals.com
vanderbiltminerals.com

Registered and pending trademarks appearing in these materials are those of Vanderbilt Minerals, LLC. For a complete listing, please visit [Trademark Listing](#).
Responsible Care is a registered trademark of the American Chemistry Council.
UL is a registered trademark of UL LLC.
OMRI Listed is a registered trademark of OMRI.
ECOCERT Greenlife™
COSMOS™
OMRI™

Before using, read, understand and comply with the information and precautions in all applicable Safety Data Sheets, labels and other product literature. The information presented herein, while not guaranteed, was prepared by technical personnel and, to the best of our knowledge and belief, is true and accurate as of the date hereof. No warranty, representation or guarantee, express or implied, is made regarding accuracy, performance, stability, reliability or use. This information is not intended to be all-inclusive, because the manner and conditions of use, handling, storage and other factors may involve other or additional safety or performance considerations. The user is responsible for determining the suitability of any material for a specific purpose and for adopting such safety precautions as may be required. Vanderbilt Minerals, LLC does not warrant the results to be obtained in using any material, and disclaims all liability with respect to the use, handling or further processing of any such material. No suggestion for use is intended as, and nothing herein shall be construed as, a recommendation to infringe any existing patent, trademark or copyright or to violate any federal, state or local law or regulation. 07/24/2020
VEEGUM® Magnesium Aluminum Silicate
VANATURAL® Bentonite Clay
for Personal Care and Pharmaceuticals

VEEGUM and VANATURAL products are natural smectite clays that have been water-washed to optimize purity and performance. Vanderbilt Minerals’ diversified reserves in the U.S. southwest are the foundation of our clay’s reputation for uniformity and quality. This secure resource base also enables the continuing development of new grades in response to customer needs.

The ores used to make VEEGUM and VANATURAL clays are mined in Nevada, Arizona and California. They are milled in Nevada and shipped to the clay processing plant in Murray, KY.

VEEGUM products are offered primarily for pharmaceutical and personal care applications, although they are widely used in other areas as well. VANATURAL products are designed for personal care applications, particularly those that require OMRI™, ECOCERT Greenlife™ or COSMOS™ (COSmetic Organic Standard™) listing as ingredients. All grades of VEEGUM and VANATURAL clays undergo the same water-washing process and meet the same standard of clay purity.
FORMULATION BENEFITS

VEEGUM® Magnesium Aluminum Silicate and VANATURAL® Bentonite Clay are valued by formulators of personal care and pharmaceutical products for their ability to:

- **Stabilize Emulsions** – One of the most useful features of these natural clays is their ability to stabilize oil-in-water (O/W) emulsions at low concentrations. The smectite colloidal structure effectively keeps the internal phase droplets suspended and separated. Since this structure is not affected by heat, these clays reduce the tendency of emulsions to thin out and break at elevated temperatures. Small amounts – typically 1-2% – will stabilize emulsions containing anionic or nonionic surfactants and a wide variety of oils, fats, and waxes. These clays are also effective in fluid water-in-oil (W/O) emulsions that are otherwise difficult to stabilize; they inhibit coalescence by increasing internal phase viscosity and by strengthening the interfacial water/oil film.

- **Stabilize Suspensions** – Like its emulsion stabilizing property, the colloidal structure of these natural clays provides excellent suspension of fine particles in aqueous systems. These clays:
 - Suspend even high density particulates
 - Prevent hard packing; suspensions that tend to settle are easily redispersed
 - Ensure pharmaceutical suspensions of uniform dosage
 - Achieve maximum suspension without losing pourability
 - Do not form gelatinous, irreversible gels, as do many organic gums
 - Offer better suspension efficiency than most organic gums at equal viscosity

- **Stabilize Organic and Natural Formulations** – **VANATURAL** and **VEEGUM Pure** clays are listed by the Organic Materials Review Institute (OMRI™). **VANATURAL VANATURAL XGB** and **VEEGUM Pure** clays are authorized by ECOCERT Greenlife™ as complying with the ECOCERT™ and COSMOS™ standards for ecological and organic cosmetics.
- **Modify Rheology** – Shear-thinning products with controlled thixotropy can be formulated. Rich emulsions spread smoothly. Suspensions and emulsions freely pump or pour without losing stability.

- **Enhance Skin Feel** – **VEEGUM®** Magnesium Aluminum Silicate and **VANATURAL®** Bentonite Clay contribute spreadability and cosmetic elegance to topical products. Because of their insoluble, platy nature they are used to formulate tack-free topical products and to reduce or eliminate the tacky, gummy or stringy nature of organic gums and polymers.

- **Modify Organic Thickeners** – In addition to their tactile benefits, **VEEGUM** and **VANATURAL** clays are often used with organic thickeners to enhance the best characteristics of each. The clays contribute synergistic viscosity and yield value. Gums and polymers provide a protective colloidal action that improves the clay’s stability in the presence of electrolytes, surfactants, and other water solubles. Recommendations for the use of these clays with organic thickeners are detailed in the section “Synergy With Organic Polymers and Gums.”

- **Perform at High and Low pH** – **VEEGUM** and **VANATURAL** clays are routinely used in products spanning the pH 2 to pH 13 range. These include AHA emulsions, antiperspirants, antacids and internal analgesic suspensions. Certain grades are particularly effective at pH extremes, where their pH stability is further extended by protective colloids such as xanthan gum.

- **Function with Most Additives** – As anionic clays, **VEEGUM** and **VANATURAL** clays are compatible with most anionics and nonionics; they are incompatible with most cationics.

- **Resist Degradation** – Because they are minerals, **VEEGUM** and **VANATURAL** clays are not decomposed by bacteria, heat or excess mechanical shear.
• **Act as Binders and Disintegrants** – VEEGUM® Magnesium Aluminum Silicate and VANATURAL® Bentonite Clay are used as non-migratory binders in tablets, sticks, and pressed cakes. They do not migrate to the product surface during drying, thereby ensuring uniformity and the desired level of hardness, rub-off, and color value. They also function as low-bulk disintegrants in massive tablets where the active ingredient makes up the major weight and bulk of the composition.

• **Provide Particular Functionality in Pharmaceuticals** – VEEGUM clays are used to modify drug release from solid dosage forms, ointments and suppositories, mask the taste of bitter drugs, and function as binders and in wet granulated and direct compression tablets.
PREPARATION of DISPERSIONS

For emulsion stabilization, suspension stabilization and thickening, VEEGUM® Magnesium Aluminum Silicate and VANATURAL® Bentonite Clay must be properly dispersed in water and hydrated to provide the desired performance properties. The two guides to successful hydration are:

√ THE BEST DISPERSIONS ARE PREPARED IN WATER FREE OF ADDITIVES.
√ MORE ENERGY INPUT GIVES QUICKER HYDRATION.

Any materials present in the water when the clay is added, including preservatives, chelating agents or other minor additives, will interfere with hydration and inhibit the formation of the desired colloidal structure.

Dry clay particles are actually multiple layers of individual platelets, each separated by a layer of water. The extent to which these particles are delaminated into individual clay platelets is referred to as the degree of hydration. The greater the degree of hydration, the stronger the colloidal structure, and the greater the viscosity and yield value of the dispersion.
For most clay grades the degree of hydration is directly proportional to the amount of energy used to disperse the product, and therefore increases in proportion to the following factors:

- **Shear**, or mixing intensity
- **Heat input**, or water temperature
- **Mixing time**

Using greater shear, or mixing for a longer time, will provide better hydration, which is measured as higher viscosity, as seen here with a 5% dispersion of VEEGUM® Magnesium Aluminum Silicate, and greater yield value.

Heat input in the form of heated water has an even more pronounced beneficial effect on hydration than does the mechanical energy contribution of shear.
Any modification of mixer intensity (e.g., speed, propeller to vessel ratio) or water temperature will affect the degree of hydration and the hydration time. Whichever mixing conditions are used, it is very important that they be consistently controlled to achieve reproducible results in the laboratory, during scale-up and in production.

Because of their unique nature, VEEGUM® Ultra Magnesium Aluminum Silicate and VANATURAL® XGB Bentonite Clay are an exception. They are relatively unaffected by changes in hydration parameters. Adequate hydration will be achieved in most cases in no more than 15 minutes. Increasing mixing intensity, mixing time or water temperature will not significantly affect degree of hydration.

The following table provides guidelines for the minimum amounts of time suggested for the hydration of the various clay grades. They are based on laboratory scale preparations:

- 1 kg batches using distilled, deionized water at specification concentrations under practical formulating conditions.

- Actual hydration times in the laboratory or in production will depend on the particular combination of batch size, mixer shear, and water temperature used.

- In the laboratory or during production, the key to consistent performance of these clays is consistent hydration conditions.

- Changes in hydration time, mixer shear, vessel size or water temperature will change results.
Minimum Suggested Hydration Times

for VEEGUM® Magnesium Aluminum Silicate and VANATURAL® Bentonite Clay

Hydration Rate

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Fast</th>
<th>Ultra</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEEGUM® R</td>
<td>120 Min</td>
<td>30 Min</td>
<td>15 Min</td>
</tr>
<tr>
<td>VEEGUM K</td>
<td>45 Min</td>
<td>20 Min</td>
<td>10 Min</td>
</tr>
<tr>
<td>VEEGUM HV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEEGUM PURE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEEGUM CH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEEGUM Ultra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VANATURAL XGB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Propeller Mixer:

- 800 rpm, 25°C water: 120 Minutes, 30 Minutes, 15 Minutes
- 800 rpm, 75°C water: 45 Minutes, 20 Minutes, 10 Minutes

Homogenizer:

- 3000 rpm, 25°C water: 30 Minutes, 20 Minutes, 10 Minutes
- 3000 rpm, 75°C water: 15 Minutes, 10 Minutes, 10 Minutes
SYNERGY WITH ORGANIC GUMS AND POLYMERS

VEEGUM® Magnesium Aluminum Silicate and VANATURAL® Bentonite Clay are often used synergistically with gums and organic thickeners. The viscosity or stability of formulations containing these mixtures will be greater than that of the same formulation made with each individual component of the mixture. These combinations allow the formulator to fine-tune viscosity, yield value, and flow properties beyond what is possible with either the clay or organic thickener alone.

For example, VEEGUM clay is frequently used with natural gums or cellulosic thickeners to provide a balance of suspension stability and smooth flow properties in oral suspensions and dandruff shampoos. VEEGUM and VANATURAL clay together with polyacrylates are used to optimize the rheology and aesthetics of topical emulsions. VEEGUM and VANATURAL clay are combined with carboxymethylcellulose in liquid makeups.

Other advantages of combining VEEGUM and VANATURAL clays with an organic thickener are:

- The combination may be more economical than the use of either component alone.

- VEEGUM and VANATURAL clays can impart yield value to systems thickened with high efficiency organic polymers or gums.

- Because the colloidal structure of these clays is not sensitive to heat, it can compensate for the loss of viscosity at elevated temperatures common to many organic thickeners.

- VEEGUM and VANATURAL clays can reduce the tacky, gummy or stringy nature of organic thickener solutions.

Because of the benefits of such clay/thickener combinations, Vanderbilt Minerals offers a pre-blended product: VANATURAL XGB (Bentonite and Xanthan Gum).
The table below provides suggested weight-to-weight ratios of VEEGUM® and VANATURAL® clays that will produce beneficial synergistic effects. Mixing procedures to introduce the two ingredients into the formulation are also recommended.

<table>
<thead>
<tr>
<th>Organic Thickener</th>
<th>Weight to Weight Ratio Range</th>
<th>Recommended Mixing Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyacrylates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyacrylates</td>
<td>5:1 to 1:1</td>
<td>A</td>
</tr>
<tr>
<td>Carboxomers</td>
<td>10:1 to 1:1</td>
<td>A;B³</td>
</tr>
<tr>
<td>Cellulosics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Carboxymethylcellulose</td>
<td>10:1 to 1:1</td>
<td>C</td>
</tr>
<tr>
<td>Hydroxyethyl Cellulose</td>
<td>1:1</td>
<td>A,D</td>
</tr>
<tr>
<td>Hydroxypropyl Cellulose</td>
<td>1:1</td>
<td>A,D</td>
</tr>
<tr>
<td>Hydroxypropylmethylcellulose</td>
<td>1:1</td>
<td>A,D</td>
</tr>
<tr>
<td>Methylcellulose</td>
<td>1:1</td>
<td>A,D</td>
</tr>
<tr>
<td>Natural Gums</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xanthan Gum</td>
<td>10:1 to 1:1</td>
<td>C</td>
</tr>
<tr>
<td>Sodium Carrageenan</td>
<td>10:1 to 1:1</td>
<td>C</td>
</tr>
<tr>
<td>Sodium Alginate</td>
<td>2:1 to 1:1</td>
<td>C</td>
</tr>
<tr>
<td>Hydroxypropyl Guar</td>
<td>1:1</td>
<td>A</td>
</tr>
<tr>
<td>Gum Arabic (Acacia)</td>
<td>4:1 to 2:1</td>
<td>C</td>
</tr>
<tr>
<td>Gum Tragacanth</td>
<td>9:1 to 2:1</td>
<td>C</td>
</tr>
</tbody>
</table>

¹For initial evaluations. Ratios are based on rheological studies in water, alone. Preferable or optimum ratios may be different in formulated products.

²Does not apply to VANATURAL XGB Bentonite Clay, which is already blended with a gum.

³When using VEEGUM Ultra
Recommended Mixing Procedures

A. Divide the available water and prepare the hydrated clay dispersion and the organic thickener solution separately. Slowly add the thickener solution to the clay dispersion with good agitation. Mix until uniform before adding other formula ingredients.

B. Add the VEEGUM® Ultra Magnesium Aluminum Silicate and carbomer simultaneously or as a dry blend to the available water. Hydrate thoroughly before adding other formula ingredients. The carbomer can be neutralized at any convenient point after hydration.

C. Add the clay and organic thickener simultaneously or as a dry blend to the available water. Hydrate thoroughly before adding other formula ingredients.

D. For nonionic cellulosics that are insoluble in hot water: hydrate the clay in hot water. Add the gum to the hot clay dispersion with good agitation. Cool the dispersion with continued agitation until the gum is completely dissolved.

NATURAL SMECTITE CLAYS - A GRADE FOR EVERY USE

<table>
<thead>
<tr>
<th></th>
<th>Pharmaceutical</th>
<th>Personal Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEEGUM® R Magnesium Aluminum Silicate</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>VEEGUM HV</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>VEEGUM K</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>VEEGUM HS</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>VEEGUM Pure</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>VEEGUM Ultra</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VEEGUM D</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VEEGUM CH</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VANATURAL® Bentonite Clay</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VANATURAL MC</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VANATURAL XGB</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
VEEGUM® Magnesium Aluminum Silicate Grades for Pharmaceuticals

VEEGUM clays have a long history of use as excipients in pharmaceutical formulations. In liquids, these clays are used primarily as suspension stabilizers and emulsion stabilizers. In ointments and suppositories they are used to control drug release. In solid dosage forms they are traditionally used as binders and disintegrants for wet granulations and, in micronized form, for direct compression tablets. These clays are also used in solid dosage forms as components of drug delivery systems, an application of increasing interest because these entirely natural excipients provide a unique combination of physicochemical properties for drug-clay interaction.

The structure of smectite clays allows for several routes to drug-clay interaction or complexation:

- Cation exchange with cationic drugs. This produces a relatively strong drug-clay bond on platelet faces that is suitable, for example, for extending drug release.
- Weak anion exchange of anionic drugs at platelet edges.
- Hydrogen bonding at platelet faces.
- Intercalation between un-delaminated platelets, which may be used for taste masking or for modifying drug release.
- Adsorption by solvent deposition onto the high surface area of the clay to increase the dissolution rate of poorly soluble drugs.

Although produced and certified to compendial specifications, these grades also have a long history of use in personal care, household, institutional, agricultural, and industrial formulations.
VEEGUM® R

Magnesium Aluminum Silicate

A useful, economical grade for a wide range of applications: pharmaceutical, cosmetic, personal care, veterinary, agricultural, household and industrial products.

Magnesium Aluminum Silicate NF Type IA

INCI Name: Magnesium Aluminum Silicate
Typical use levels: Between 0.5% and 3%.

VEEGUM HV

Indicated where high viscosity at low solids is desired. Excellent emulsion and suspension stabilization is obtained at low use levels. It is used primarily in cosmetics (e.g., pigment suspension in mascaras and eye shadow creams) and pharmaceutical suspensions.

Magnesium Aluminum Silicate NF Type IC

INCI Name: Magnesium Aluminum Silicate
Typical use levels: Between 0.5% and 3%.

VEEGUM K

Used in pharmaceutical oral suspensions at acid pH and in hair care formulas containing conditioning ingredients. It has low acid demand and high acid and electrolyte compatibility. It is used to provide good suspension at low viscosity.

Magnesium Aluminum Silicate NF Type IIA

INCI Name: Magnesium Aluminum Silicate
Typical use levels: Between 0.5% and 3%.

VEEGUM HS

For optimum pH stability in acidic pharmaceutical suspensions; maximum electrolyte stability and minimum acid demand.

Purified Bentonite NF

INCI Name: Magnesium Aluminum Silicate
Typical use levels: Between 1.0% and 3%.

USP/NF monographed **VEEGUM®** Magnesium Aluminum Silicate clays, including **VEEGUM R**, **VEEGUM HS**, **VEEGUM K**, and **VEEGUM HV**, are intended for oral, topical, and dental use only. These products are not intended for other uses, such as parenteral, inhalation, or ophthalmic.
APPLICATION GUIDE

<table>
<thead>
<tr>
<th>Pharmaceuticals</th>
<th>VEEGUM® Magnesium Aluminum Silicate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>API Creams and Lotions at pH > 6</td>
<td>X</td>
</tr>
<tr>
<td>API Creams and Lotions at pH < 6</td>
<td></td>
</tr>
<tr>
<td>API Suspensions at pH > 6</td>
<td>X</td>
</tr>
<tr>
<td>Anti-dandruff, Treatment Shampoos</td>
<td>X</td>
</tr>
<tr>
<td>Tablet Binder/Disintegrant Wet Granulation</td>
<td>X</td>
</tr>
<tr>
<td>Tablet Release Regulator Rapid Release / Extended Release</td>
<td>X</td>
</tr>
<tr>
<td>Taste Masking</td>
<td>X</td>
</tr>
<tr>
<td>Dentifrices</td>
<td>X</td>
</tr>
</tbody>
</table>
VEEGUM® Magnesium Aluminum Silicate and VANAUTRAL® Bentonite Clay Grades for Personal Care

In addition to the pharmaceutical grades, these grades are used in personal care products. Although intended for personal care applications, VEEGUM Pure is produced to pharmaceutical grade specifications. Although not pharmaceutical grades, VEEGUM Ultra and VEEGUM D are used in certain OTC pharmaceuticals.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Typical use levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEEGUM Ultra</td>
<td>A unique, fast hydrating acidic smectite clay for topicals. It is particularly useful in sunscreens and exfoliant acid emulsions.</td>
<td>Between 0.5% and 2%</td>
</tr>
<tr>
<td>VEEGUM Pure</td>
<td>This compendial conforming grade is ECOCERT Greenlife™, COSMOS™ and OMRI™-listed and the ideal emulsion stabilizer, suspension aid and thickener for organic and natural personal products.</td>
<td>Between 1% and 3%</td>
</tr>
<tr>
<td>VEEGUM D</td>
<td>A product designed for rapid hydration, even at high concentrations. It is used in dentifrice pastes and gels.</td>
<td>Between 0.5% and 3%</td>
</tr>
<tr>
<td>VEEGUM CH</td>
<td>A versatile natural smectite clay for personal care formulations, including those at high pH.</td>
<td>Between 0.5% and 2%</td>
</tr>
</tbody>
</table>
| **VANATURAL® Bentonite Clay** | A water-washed bentonite clay listed with ECOCERT Greenlife™, COSMOS™ and OMRI™. A pure and natural suspension stabilizer, emulsion optimizer and rheology modifier for all topical products. It is particularly suited for creams, lotions, suspensions and other personal care products marketed as organic or natural.
INCI name: Bentonite
Typical use levels: Between 0.5% and 3% |
| **VANATURAL MC** | A pure and natural suspension stabilizer, emulsion optimizer and rheology modifier for all topical products. VANATURAL processed with strict control of microbiology for applications not requiring OMRI or ECOCERT listing.
INCI name: Bentonite
Typical use levels: Between 0.5% and 3% |
| **VANATURAL® XGB** | A tailored synergistic blend of high purity natural bentonite and xanthan gum that hydrates quickly, even with low shear mixing in unheated water. ECOCERT Greenlife™ and COSMOS™ listed. It imparts a pleasant application feel while reliably stabilizing water-based suspensions and emulsions over a broad range of pH and storage temperatures. Especially recommended for difficult to stabilize suspensions and emulsions.
INCI name: Bentonite (and) Xanthan Gum
Typical use levels: Between 0.3% and 4% |

Cosmetic grades of VEEGUM® Magnesium Aluminum Silicate and VANATURAL® Bentonite Clay, including VEEGUM D, VEEGUM Ultra, VEEGUM CH, VEEGUM Pure, VANATURAL, VANATURAL MC, and VANATURAL XGB are intended for topical and dental use in cosmetics only.
APPLICATION GUIDE

Personal Care

VANATURAL® Bentonite Clay

<table>
<thead>
<tr>
<th></th>
<th>VANATURAL/ VANATURAL MC</th>
<th>VANATURAL XGB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creams and Lotions at pH < 6</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Creams and Lotions at pH > 6</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sunscreens</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Antiperspirants</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Depilatories, Perms, Straighteners</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Color Cosmetics</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pressed Powder Color Cosmetics</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Loose Powder Color Cosmetics</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dandruff Shampoos</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Conditioning 2-in-1 Shampoos</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Facial Masks</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dentifrices</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Personal Care

VEEGUM® Magnesium Aluminum Silicate

<table>
<thead>
<tr>
<th></th>
<th>Ultra</th>
<th>R</th>
<th>Pure</th>
<th>HV</th>
<th>K</th>
<th>HS</th>
<th>CH</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creams and Lotions at pH < 6</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creams and Lotions at pH > 6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunscreens</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiperspirants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Depilatories, Perms, Straighteners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Color Cosmetics</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressed Powder Color Cosmetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Loose Powder Color Cosmetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Dandruff Shampoos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Conditioning 2-in-1 Shampoos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Facial Masks</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dentifrices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

SMECTITE CLAYS

VEEGUM® Magnesium Aluminum Silicate and
VANATURAL® Bentonite Clay

What They Are

Smectite is the mineralogical term for a group of trilayer clays which include the commercially significant varieties montmorillonite, hectorite and saponite. At one time this group was referred to generically as montmorillonite clay. The group name was changed to smectite clay to avoid confusion with the mineralogically distinct montmorillonite member, but the generic use of the term montmorillonite has persisted among some researchers. Smectite clays are also, by tradition, known under the geological term bentonite. Bentonite is an ore or product with substantial smectite content, most often montmorillonite.

Smectite clays have characteristic layered structures and consequently individual crystals have a flake or platelet shape. They contain a continuous alumina or magnesia octahedral layer that is bound on both sides by a continuous silica layer. The silica layer is composed of tetrahedra with three shared oxygens, forming linked rings with hexagonal openings. When the predominant octahedral cation is Al$^{3+}$, as in montmorillonite, charge balancing within the clay lattice requires that only two of every three octahedral positions are filled, and the clay is described as dioctahedral. If Mg$^{2+}$ predominates, as in saponite and hectorite, all octahedral positions must be filled, and the clay is called trioctahedral. A single smectite clay crystal is 0.96 nanometer thick and up to several hundred nanometers across.

The smectite clays are characterized by metal ion substitutions within their lattice structures, so that they are electrically unbalanced. Substitutions within the crystal lattice result in negatively charged platelet faces. Lattice discontinuities account for a very slight positive charge on edges. The net platelet charge is negative.
Montmorillonite is characterized by the substitution of a limited number of octahedral Al^{3+} with Mg^{2+}, which accounts for its negative charge. This is naturally balanced by Na^+ between the clay platelets, partially sunk in the hexagonal openings of the silica layer. Because the sodium ions are not structural they can be easily replaced by other positively charged elements or molecules, and are called exchangeable cations. In addition to the charge balancing cations, a tightly held layer of oriented water, about 0.29 nanometers thick, occupies the space between individual flakes. This water requires temperatures well in excess of 100ºC for removal. A single VEEGUM® Magnesium Aluminum Silicate or VANATURAL® Bentonite Clay particle is composed of thousands of these sandwiched platelets with exchangeable cations and a layer of water between each.

The trioctahedral analogues of montmorillonite are saponite and hectorite. Saponite has limited substitution of tetrahedral Si^{4+} by Al^{3+}, while hectorite has limited substitution of octahedral Mg^{2+} by Li^+ and OH^- by F^-. As with montmorillonite, the resulting charge imbalance is naturally compensated for by exchangeable Na^+.
Clay Hydration

The binding effect of inter-platelet water and counterions makes mechanical delamination of smectite clays very difficult, but swelling by intercalation with polar liquids and solutions is quite easy. Likewise, in cases where the full surface area of the clay needs to be exposed and/or its rheological properties exploited, hydraulic delamination is relatively simple. When clay and water are mixed, water penetrates between platelets forcing them further apart. The cations begin to diffuse away from platelet faces. Diffusion (the movement of cations from between platelets out into the water) and osmosis (the movement of water into the space between platelets) then promote delamination until platelets are completely separated.

For most VEEGUM® Magnesium Aluminum Silicate and VANATURAL® Bentonite Clay grades, the speed with which platelet separation occurs is directly related to the amount of energy introduced during hydration. Both mechanical and thermal energy accelerate hydration: high shear mixing or the use of warm water will reduce hydration time. The presence of dissolved substances in the water will prolong hydration time by inhibiting the diffusion and osmosis essential to platelet separation.

Clay Rheological Properties

Once the clay is hydrated (i.e., the platelets are separated) the weakly positive platelet edges are attracted to the negatively charged platelet faces. A three dimensional colloidal structure forms, commonly called the “house of cards”. The formation of this colloidal structure accounts for the characteristic rheology imparted by these clays. Dispersions of VEEGUM and VANATURAL clays are pseudoplastic and thixotropic, in addition to contributing useful yield value.
This colloidal structure is particularly valued for its ability to trap and segregate solids, as in a suspension, oils, as in an emulsion, and gases, as in a foam or mousse.

Rheology - After the clay is hydrated, the colloidal structure builds rapidly at first, giving a quick increase in viscosity. As time passes, the remaining free platelets take a longer time to find an available site in the structure, so viscosity increases at a progressively slower rate. Conversely, when a given shear is applied, most of the structure is disrupted quickly, with subsequent breakdown becoming more gradual. The dispersions are therefore thixotropic: undisturbed they increase in viscosity over time, and under a constant shear rate they decrease in viscosity over time.

Smectite dispersions are also pseudoplastic, because increasing the rate of applied shear (thereby increasing structure breakdown) results in decreasing viscosities.
Yield Value - The colloidal structure also provides the clay’s most useful property - yield value. This is a measure of the resistance of the structure to breakdown. A certain minimum force, the yield value, must be applied to start disrupting the structure. Solids, oils and gases are trapped and segregated by the structure. They must exert a force greater than the yield value to be able to move through the liquid. This means that the greater the yield value, the more stable the suspension, emulsion or foam.

A unique and valuable feature of VEEGUM® Magnesium Aluminum Silicate and VANATURAL® Bentonite Clay clays is their ability to impart yield value at low viscosity. Stabilization of the dispersed phase is possible even in thin, fluid systems where flowability is important. Most common organic thickeners possess little or no yield value and can only stabilize suspensions, emulsions or foams at high viscosity.

Rheology Modifiers - Formulators are more concerned with the behavior of VEEGUM and VANATURAL clays in the presence of other ingredients, rather than that in water alone. Most water-soluble components will modify the rheological properties of smectite clay, usually beneficially. Salts, surfactants and water-miscible solvents will increase the clay’s viscosity and yield value contribution and decrease thixotropy, but still enable a shear-thinning composition.
Excess water solubles will destabilize the clay’s colloidal structure. This may appear as a relatively stable thick gel or as flocculated masses with syneresis. The effect of electrolytes and water miscible solvents can be explained in relation to double layer theory. According to this model, most of the exchangeable ions in the clay dispersion tend to accumulate, due to electrostatic attraction, near the negative faces of the platelets, but simultaneously have a tendency to diffuse away from platelet surfaces toward the bulk of the water where their concentration is low. The equilibration of these opposing effects causes the formation of a diffuse atmosphere of counterions, with concentration diminishing with distance from the platelet face. A negative “double layer” is thus established, consisting of the negative surface charge plus the diffuse counterions.

The analogous positive double layer is established in association with platelet edges.
The house of cards colloidal structure is therefore actually based on the interaction of smectite platelet edge and face double layers.

When electrolyte or polar solvent is added to the dispersion, the double layers are compressed. This allows the platelet edges and faces to more closely approach, resulting in a more rigid structure and consequently higher viscosity and yield value.

If the double layers become sufficiently compressed, face-face van der Waals attraction will predominate and the house of cards colloidal structure will be lost, as will thickening and suspending efficiency.
The effect of electrolytes on the clay dispersion depends on cation valence and size as well as concentration. Cations with greater positive charge and/or smaller hydrated radius are more strongly attracted than cations with lower positive charge and/or larger hydrated radius because they can get closer to the clay surface and/or satisfy more negative charges. The higher the cation valence, the less electrolyte the clay can accommodate before the colloidal structure collapses. In short, monovalent cations have the weakest flocculating effect and are the most compatible with VEEGUM® Magnesium Aluminum Silicate and VANATURAL® Bentonite Clay clays. Divalent cations have a stronger flocculating effect, and trivalent cations the strongest. The following lyotropic series indicates the relative ability of cations to replace one another if present in equivalent quantities based on ionic charge and size (hydrated radius).

\[\text{Al}^{3+} > \text{Ca}^{2+} > \text{Mg}^{2+} > \text{K}^+ = \text{NH}_4^+ > \text{Na}^+ > \text{Li}^+ \]

By the Law of Mass Action, nevertheless, adding large amounts of one cation will replace others, regardless of their position in the lyotropic series.

The properties of individual smectite clays – e.g., viscosity, hydration rate, electrolyte tolerance – vary according to their particular structure, exchange cations and exchange capacity. Each of these properties can be manipulated by the choice of smectite clay, based on location and type, and by blending clays from different locations so as to obtain the desired balance of properties. For example, the blend of smectite clays that make up VEEGUM K enable this product to provide greater electrolyte tolerance than VEEGUM R while the blend of clays in VEEGUM R provide greater viscosity and yield value than VEEGUM K. In addition, certain gums, such as xanthan gum and CMC, act as synergists and protective colloids when used together with VEEGUM and VANATURAL clays. They can significantly improve the compatibility of the clay with relatively high levels of water solubles.